Thermal evolution of a pulsating neutron star
نویسندگان
چکیده
We have derived a set of equations to describe the thermal evolution of a neutron star which undergoes small-amplitude radial pulsations. We have taken into account, in the frame of the General Theory of Relativity, the pulsation damping due to the bulk and shear viscosity and the accompanying heating of the star. The neutrino emission of a pulsating non-superfluid star and its heating due to the bulk viscosity are calculated assuming that both processes are determined by the non-equilibrium modified Urca process. Analytical and numerical solutions to the set of equations of the stellar evolution are obtained for linear and strongly non-linear deviations from betaequilibrium. It is shown that a pulsating star may be heated to very high temperatures, while the pulsations damp very slowly with time (a power law damping for 100–1000 years), as long as the damping is determined by the bulk viscosity. The contribution of the shear viscosity to the damping becomes important in a rather cool star with a low pulsation energy.
منابع مشابه
Temperature-dependent pulsations of superfluid neutron stars
We examine radial oscillations of superfluid neutron stars at finite internal temperatures. For this purpose, we generalize the description of relativistic superfluid hydrodynamics to the case of superfluid mixtures. We show that in a neutron star, at hydrostatic and beta-equilibrium, the redshifted temperature gradient is smoothed out by neutron superfluidity (but not by proton superfluidity)....
متن کاملThermal Evolution of Isolated Neutron Stars
After a brief summary of neutron star cooling theory I present results which emphasize the importance of baryon pairing in the neutron star core. I show how the thermal evolution may be totally controlled by pairing for models which include only nucleons and models containing also hyperons. Finally, I consider the thermal evolution of ultramagnetized neutron stars whose existence has been infer...
متن کاملCould the compact remnant of SN 1987 A be a quark star ?
The standard model for Type II supernovae explosion, confirmed by the detection of the neutrinos emitted during the supernova explosion, predicts the formation of a compact object, usually assumed to be a neutron star. However, the lack of the detection of a neutron star or pulsar formed in the SN 1987A still remains an unsolved mystery. In this paper we suggest that the newly formed neutron st...
متن کاملEvolution of a Neutron Star From its Birth to Old Age
The main stages in the evolution of a neutron star, from its birth as a proto-neutron star, to its old age as a cold, catalyzed configuration, are described. A proto-neutron star is formed in the aftermath of a successful supernova explosion and its evolution is dominated by neutrino diffusion. Its neutrino signal is a valuable diagnostic of its internal structure and composition. During its tr...
متن کاملThe Thermal Evolution of Ultramagnetized Neutron Stars
Using recently calculated analytic and numerical models for the thermal structure of ultramagnetized neutron stars, we estimate the effects that ultrastrong magnetic fields B ≥ 10 G have on the thermal evolution of a neutron star. Understanding this evolution is necessary to interpret models that invoke “magnetars” to account for soft γ-ray emission from some repeating sources. Subject headings...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005